Advanced algorithms are complex problem-solving techniques that go beyond basic algorithms to handle intricate challenges. These algorithms are designed to optimize solutions, process large datasets, or solve specialized problems efficiently.
// Example: Dynamic Programming in Java
public int fibonacci(int n) {
int[] dp = new int[n + 1];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
// Example: Merge Sort in Java
void mergeSort(int[] array, int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
mergeSort(array, left, mid);
mergeSort(array, mid + 1, right);
merge(array, left, mid, right);
}
}
// Example: Dijkstra's Algorithm in Java
class Graph {
void dijkstra(int[][] graph, int src) {
int V = graph.length;
int[] dist = new int[V];
boolean[] visited = new boolean[V];
Arrays.fill(dist, Integer.MAX_VALUE);
dist[src] = 0;
for (int count = 0; count < V - 1; count++) {
int u = minDistance(dist, visited);
visited[u] = true;
for (int v = 0; v < V; v++) {
if (!visited[v] && graph[u][v] != 0 && dist[u] != Integer.MAX_VALUE && dist[u] + graph[u][v] < dist[v]) {
dist[v] = dist[u] + graph[u][v];
}
}
}
}
int minDistance(int[] dist, boolean[] visited) {
int min = Integer.MAX_VALUE, minIndex = -1;
for (int v = 0; v < dist.length; v++) {
if (!visited[v] && dist[v] <= min) {
min = dist[v];
minIndex = v;
}
}
return minIndex;
}
}
// Example: Backtracking for Sudoku in Java
boolean solveSudoku(int[][] board, int row, int col) {
if (row == 9) return true;
if (col == 9) return solveSudoku(board, row + 1, 0);
if (board[row][col] != 0) return solveSudoku(board, row, col + 1);
for (int num = 1; num <= 9; num++) {
if (isValid(board, row, col, num)) {
board[row][col] = num;
if (solveSudoku(board, row, col + 1)) return true;
board[row][col] = 0;
}
}
return false;
}
Advanced algorithms form the backbone of modern computing, enabling solutions to a wide range of problems in various domains.